Dieses Bild zeigt Dr.-Ing. Pascal Mindermann

Dr.-Ing. Pascal Mindermann

Herr

Wissenschaftlicher Mitarbeiter (Postdoc)

Kontakt

Pfaffenwaldring 9
70569 Stuttgart
Deutschland

Fachgebiet

Pascal Mindermann ist Post-Doc am Institut für Textil- und Fasertechnologien der Universität Stuttgart, Deutschland. Innerhalb eines multidisziplinären Teams im Exzellenzcluster IntCDC umfasst seine aktuelle Forschung verschiedene Aspekte des kernlosen Wickelns, einem additiven Fertigungsverfahren für Leichtbaustrukturen aus Faserverbundwerkstoffen. Im Jahr 2022 schloss er seine Dissertation mit Auszeichnung ab, indem er das kernlose Wickeln digital charakterisierte. Mit seinem akademischen Hintergrund in Luft- und Raumfahrttechnik und Bionik überträgt er fortlaufend das kernlose Wickelverfahren von der Architektur auf andere Branchen. Seine Forschung und auch seine Veröffentlichungen wurden mehrfach ausgezeichnet.

  1. Kannenberg, F., Zechmeister, C., Gil Pérez, M., Guo, Y., Yang, X., Forster, D., Hügle, S., Mindermann, P., Abdelaal, M., Balangé, L., Schwieger, V., Weiskopf, D., Gresser, G.T., Middendorf, P., Bischoff, M., Knippers, J., Menges, A.: Toward reciprocal feedback between computational design, engineering, and fabrication to co-design coreless filament-wound structures. Journal of Computational Design and Engineering. 11, 374–394 (2024). https://doi.org/10.1093/jcde/qwae048.
  2. Mindermann, P., Acker, D., Wegner, R., Fasoulas, S., Gresser, G.T.: Long-span fiber composite truss made by coreless filament winding for large-scale satellite structural systems demonstrated on a planetary sunshade concept. Scientific Reports. 14, 8190 (2024). https://doi.org/10.1038/s41598-024-58513-w.
  3. Mindermann, P., Witt, M.-U., Samie, A., Selvarayan, S.K., Gresser, G.T.: Integration of ceramic matrix systems into coreless filament wound fiber-reinforced composite lightweight structures for lunar resource utilization. Composites Part C: Open Access. 15, 100508 (2024). https://doi.org/10.1016/j.jcomc.2024.100508.
  4. Gil Pérez, M., Mindermann, P., Zechmeister, C., Forster, D., Guo, Y., Hügle, S., Kannenberg, F., Balangé, L., Schwieger, V., Middendorf, P., Bischoff, M., Menges, A., Gresser, G.T., Knippers, J.: Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems. Journal of Computational Design and Engineering. 1–35 (2023). https://doi.org/10.1093/jcde/qwad064.
  5. Maheswaran, T., Mindermann, P., Acker, D., Gresser, G.T., Fasoulas, S.: International planetary sunshade concept with a function-integrated and scalable support structure based on coreless filament winding. Journal of Physics: Conference Series. 2526, 012113 (2023). https://doi.org/10.1088/1742-6596/2526/1/012113.
  6. Mindermann, P., Kaiser, P., Müller, L., Fischer, L., Gebhardt, P., Hindenlang, U., Gresser, G.T.: Investigation of different load transmission concepts for coreless filament wound structures. Composite Structures. 303, 116287 (2023). https://doi.org/10.1016/j.compstruct.2022.116287.
  7. Mindermann, P., Gil Pérez, M., Kamimura, N., Knippers, J., Gresser, G.T.: Implementation of fiber-optical sensors into coreless filament-wound composite structures. Composite Structures. 290, 115558 (2022). https://doi.org/10.1016/j.compstruct.2022.115558.
  8. Mindermann, P., Gresser, G.T.: Adaptive winding pin and hooking capacity model for coreless filament winding. Journal of Reinforced Plastics and Composites. (2022). https://doi.org/10.1177/07316844221094777.
  9. Mindermann, P., Müllner, R., Dieringer, E., Ocker, C., Klink, R., Merkel, M., Gresser, G.T.: Design of Fiber-Composite/Metal–Hybrid Structures Made by Multi-Stage Coreless Filament Winding. Applied Sciences. 12, 2296 (2022). https://doi.org/10.3390/app12052296.
  10. Mindermann, P., Pérez, M.G., Knippers, J., Gresser, G.T.: Investigation of the Fabrication Suitability, Structural Performance, and Sustainability of Natural Fibers in Coreless Filament Winding. Materials. 15, 3260 (2022). https://doi.org/10.3390/ma15093260.
  11. Mindermann, P., Witt, M.-U., Gresser, G.T.: Pultrusion-winding: A novel fabrication method for coreless wound fiber-reinforced thermoset composites with distinct cross-section. Composites Part A: Applied Science and Manufacturing. 154, 106763 (2022). https://doi.org/10.1016/j.compositesa.2021.106763.
  12. Bodea, S., Mindermann, P., Gresser, G.T., Menges, A.: Additive Manufacturing of Large Coreless Filament Wound Composite Elements for Building Construction. 3D Printing and Additive Manufacturing. (2021). https://doi.org/10.1089/3dp.2020.0346.
  13. Mindermann, P., Bodea, S., Menges, A., Gresser, G.T.: Development of an Impregnation End-Effector with Fiber Tension Monitoring for Robotic Coreless Filament Winding. Processes. 9(5), 806 (2021). https://doi.org/10.3390/pr9050806.
  14. Mindermann, P., Rongen, B., Gubetini, D., Knippers, J., Gresser, G.T.: Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding. Materials. 14, 5509 (2021). https://doi.org/10.3390/ma14195509.
  15. Mindermann, P., Gresser, G.T., Milwich, M.: EP000003808547A1 - Method and tool arrangement for producing a fibre matrix composite profile structure and fibre matrix composite profile structure, (2020).
  16. Kovaleva, D., Gericke, O., Wulle, F., Mindermann, P., Sobek, W., Verl, A., Gresser, G.T.: Rosenstein Pavilion: a lightweight concrete shell based on principles of biological structures. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 92–101. De Gruyter, Berlin, Boston (2019). https://doi.org/10.1515/9783035617917-012.
  17. Mindermann, P., Gresser, G.T., Milwich, M.: DE102019127568A1 - Verfahren und Werkzeuganordnung zum Herstellen einer Faser-Matrix-Verbund-Profil-Struktur und Faser-Matrix-Verbund-Profil-Struktur, (2019).
  18. Wulle, F., Kovaleva, D., Mindermann, P., Christof, H., Wurst, K.-H., Lechler, A., Verl, A., Sobek, W., Haase, W., Gresser, G.T.: Nature As Source Of Ideas For Modern Manufacturing Methods. In: Knippers, J., Schmid, U., and Speck, T. (eds.) Biomimetics for Architecture: Learning from Nature. pp. 84–91. De Gruyter, Berlin, Boston (2019). https://doi.org/10.1515/9783035617917-011.
  19. Mindermann, P., Gresser, G.T.: Robotic 3D Deposition of Impregnated Carbon Rovings with Gradient Properties for Primary Structures. In: 69th International Astronautical Congress (2018).
  20. Grzesik, B., Mindermann, P., Linke, S., Dietz, A., Stoll, E.: Alignment mechanism and system concept of a scalable deployable ultra-lightweight space telescope for a 1U CubeSat demonstrator. In: 68th International Astronautical Congress (2017).
  21. Stoll, E., Mindermann, P., Grzesik, B., Linke, S., Dietz, A., Frey, S.: OCULUS-Cube - a Demonstrator of Optical Coatings for Ultra Lightweight Robust Spacecraft Structures. In: IAA Symposium on Small Satellites for Earth Observation (2017).
  22. Trentlage, C., Mindermann, P., Larbi, M.K.B., Stoll, E.: Development and Test of an Adaptable Docking Mechanism Based on Mushroom-Shaped Adhesive Microstructures. In: AIAA SPACE 2016. American Institute of Aeronautics and Astronautics (2016). https://doi.org/10.2514/6.2016-5486.
Zum Seitenanfang